skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Yufeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. In a multicellular organism, cell lineages share a common evolutionary history. Knowing this history can facilitate the study of development, aging, and cancer. Cell lineage trees represent the evolutionary history of cells sampled from an organism. Recent developments in single-cell sequencing have greatly facilitated the inference of cell lineage trees. However, single-cell data are sparse and noisy, and the size of single-cell data is increasing rapidly. Accurate inference of cell lineage tree from large single-cell data is computationally challenging. In this paper, we present ScisTree2, a fast and accurate cell lineage tree inference and genotype calling approach based on the infinite-sites model. ScisTree2 relies on an efficient local search approach to find optimal trees. ScisTree2 also calls single-cell genotypes based on the inferred cell lineage tree. Experiments on simulated and real biological data show that ScisTree2 achieves better overall accuracy while being significantly more efficient than existing methods. To the best of our knowledge, ScisTree2 is the first model-based cell lineage tree inference and genotype calling approach that is capable of handling datasets from tens of thousands of cells or more. 
    more » « less
    Free, publicly-accessible full text available September 3, 2026
  3. A key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding. Here, we study this question using a segregated graph (Shpitser, 2015) representation of these mechanisms, and examine how uncertainty about the true underlying mechanism impacts downstream computation of network causal effects, particularly under full interference---settings where we only have a single realization of a network and each unit may depend on any other unit in the network. Under certain assumptions about asymptotic growth of the network, we derive likelihood ratio tests that can be used to identify whether different sets of variables---confounders, treatments, and outcomes---across units exhibit dependence due to contagion or latent confounding. We then propose network causal effect estimation strategies that provide unbiased and consistent estimates if the dependence mechanisms are either known or correctly inferred using our proposed tests. Together, the proposed methods allow network effect estimation in a wider range of full interference scenarios that have not been considered in prior work. We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks. 
    more » « less
    Free, publicly-accessible full text available May 7, 2026
  4. Phylogenetic network is an evolutionary model that uses a rooted directed acyclic graph (instead of a tree) to model an evolutionary history of species in which reticulate events (e.g., hybrid speciation or horizontal gene transfer) occurred. Tree-child network is a kind of phylogenetic network with structural constraints. Existing approaches for tree-child network reconstruction can be slow for large data. In this study, we present several computational approaches for bounding from below the number of reticulations in a tree-child network that displays a given set of rooted binary phylogenetic trees. In addition, we also present some theoretical results on bounding from above the number of reticulations. Through simulation, we demonstrate that the new lower bounds on the reticulation number for tree-child networks can practically be computed for large tree data. The bounds can provide estimates of reticulation for relatively large data. 
    more » « less
  5. The genome of an individual from an admixed population consists of segments originated from different ancestral populations. Most existing ancestry inference approaches focus on calling these segments for the extant individual. In this paper, we present a general ancestry inference approach for inferring recent ancestors from an extant genome. Given the genome of an individual from a recently admixed population, our method can estimate the proportions of the genomes of the recent ancestors of this individual that originated from some ancestral populations. The key step of our method is the inference of ancestors (called founders) right after the formation of an admixed population. The inferred founders can then be used to infer the ancestry of recent ancestors of an extant individual. Our method is implemented in a computer program called PedMix2. To the best of our knowledge, there is no existing method that can practically infer ancestors beyond grandparents from an extant individual’s genome. Results on both simulated and real data show that PedMix2 performs well in ancestry inference. 
    more » « less
  6. Abstract Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat centromeric retrotransposon of maize (CRM), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here, we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. In contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared with the CRM elements. Using a phylogenetically guided approach, we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species. 
    more » « less
  7. The reconstruction of phylogenetic networks is an important but challenging problem in phylogenetics and genome evolution, as the space of phylogenetic networks is vast and cannot be sampled well. One approach to the problem is to solve the minimum phylogenetic network problem, in which phylogenetic trees are first inferred, and then the smallest phylogenetic network that displays all the trees is computed. The approach takes advantage of the fact that the theory of phylogenetic trees is mature, and there are excellent tools available for inferring phylogenetic trees from a large number of biomolecular sequences. A tree–child network is a phylogenetic network satisfying the condition that every nonleaf node has at least one child that is of indegree one. Here, we develop a new method that infers the minimum tree–child network by aligning lineage taxon strings in the phylogenetic trees. This algorithmic innovation enables us to get around the limitations of the existing programs for phylogenetic network inference. Our new program, named ALTS, is fast enough to infer a tree–child network with a large number of reticulations for a set of up to 50 phylogenetic trees with 50 taxa that have only trivial common clusters in about a quarter of an hour on average. 
    more » « less
  8. Abstract Motivation Population admixture is an important subject in population genetics. Inferring population demographic history with admixture under the so-called admixture network model from population genetic data is an established problem in genetics. Existing admixture network inference approaches work with single genetic polymorphisms. While these methods are usually very fast, they do not fully utilize the information [e.g. linkage disequilibrium (LD)] contained in population genetic data. Results In this article, we develop a new admixture network inference method called GTmix. Different from existing methods, GTmix works with local gene genealogies that can be inferred from population haplotypes. Local gene genealogies represent the evolutionary history of sampled haplotypes and contain the LD information. GTmix performs coalescent-based maximum likelihood inference of admixture networks with inferred local genealogies based on the well-known multispecies coalescent (MSC) model. GTmix utilizes various techniques to speed up the likelihood computation on the MSC model and the optimal network search. Our simulations show that GTmix can infer more accurate admixture networks with much smaller data than existing methods, even when these existing methods are given much larger data. GTmix is reasonably efficient and can analyze population genetic datasets of current interests. Availability and implementation The program GTmix is available for download at: https://github.com/yufengwudcs/GTmix. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less